viernes, 3 de junio de 2011

4.5 Serie de Taylor

En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma: sin(x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13. La función exponencial (en azul), y la suma de los primeros n+1 términos de su serie de Taylor en torno a cero (en rojo). Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.

La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos a, es la serie de potencias: que puede ser escrito de una manera más compacta como donde n! es el factorial de n y f (n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia f y (x − a)0 y 0! son ambos definidos como uno

En el siglo XIV, los primeros ejemplos del uso de series de Taylor y métodos similares fueron dados por Madhava of Sangamagrama.3 A pesar de que hoy en día ningún registro de su trabajo ha sobrevivido a los años, escritos de matemáticos hindúes posteriores sugieren que él encontró un número de casos especiales de la serie de Taylor, incluidos aquellos para las funciones trigonométricas del seno, coseno, tangente y arcotangente.
En el siglo XVII, James Gregory también trabajó en esta área y publicó varias series de Maclaurin. Pero recién en 1715 se presentó una forma general para construir estas series para todas las funciones para las que existe y fue presentado por Brook Taylor, de quiénrecibe su nombre. Las series de Maclaurin fueron nombradas así por Colin Maclaurin, un profesor de Edinburgo, quién publicó el 
caso especial de las series de Taylor en el siglo XVIII.


En una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define con la siguiente suma:
sin (x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13



Aquí, n! es el factorial n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del 
teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
Si a = 0, a la serie se le llama serie de Maclaurin

No hay comentarios:

Publicar un comentario